; \ | "":,), ' Ll éODht
13 1} - T’ Y ) L tml
(w9’ P 40" ‘ .,“: & th

;JA{!TGOI}REHMIE THINKING
Sl WITH PYTHON s

ap
L

KTU 2024 SCHEME

(Common to all branches)

~

= Dr., Jem@omasmanachakel
Dr:’/Anusha S. P.

A?ﬁlraj S. Kumar,

(Colle9304En)§|neerlng Trivandrum)’




ALGORITHMIC THINKING WITH PYTHON

Dr. Jerrin Thomas Panachakel
Assistant Professor,
Department of Electronics & Communication Engineering

Dr. Anusha S. P.
Associate Professor
Department of Civil Engineering

Abhiraj S. Kumar
Project Associate

College of Engineering Trivandrum

Publisher Name
2024



PREFACE

Welcome to "Algorithmic Thinking with Python," a textbook for the university core
course “UCEST105 Algorithmic Thinking with Python”, for first-year undergraduate
engineering students of the 2024 scheme of engineering colleges affiliated with APJ
Abdul Kalam Technological University. As part of the core curriculum, this course
introduces students to the essentials of computational thinking and problem-solving
using Python, ensuring that every student is equipped with critical skills relevant to
their engineering discipline.

Python’s versatility and its widespread application across a spectrum of fields make
it an invaluable tool for today’s engineers. Whether it’s developing software, enhancing
cybersecurity measures, optimizing electronic circuits, or engineering novel materials
and biological systems, Python serves as a bridge between theoretical concepts and
practical application. Its simplicity and readability, combined with powerful libraries,
make Python an ideal language for students embarking on their engineering journey.

Engineering disciplines at APJ Abdul Kalam Technological University are diverse,
ranging from Computer Science to Food Technology, each engaging with technology
in unique ways. Regardless of specialization, all students benefit from a robust under-
standing of algorithmic processes, making Python an ideal tool for fostering such skills.
This course aims to unify these diverse branches by providing a common foundation in
computational thinking that is adaptable to the various challenges encountered in the
engineering field.

“Algorithmic Thinking with Python” encompasses:

o Essential Python programming techniques from basic to advanced levels.

o Detailed exploration of algorithmic paradigms such as brute force, divide-and-
conquer, dynamic programming, and heuristics.

o Effective problem-solving strategies demonstrated through Python.

e A blend of theoretical concepts and practical applications with hands-on exercises
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tailored to reinforce and apply learning in real-world contexts.

Our aim is not merely to teach Python but to embed a deep-seated capability for
algorithmic thinking that students can apply across various engineering challenges. By
the end of this course, students will have developed not only proficiency in Python
programming but also an advanced approach to engineering problem-solving that will
serve them throughout their careers.

Here’s to embarking on a transformative learning experience that harnesses the
power of Python to fuel your engineering aspirations!

Jerrin Thomas Panachakel, Anusha S.P, Abhiraj S. Kumar
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SYLLABUS

Module
No.

Syllabus Description

Contact
Hours

PROBLEM-SOLVING STRATEGIES: - Problem-
solving strategies defined, Importance of understanding
multiple problem-solving strategies, Trial and Error,

Heuristics, Means-Ends Analysis, and Backtracking
(Working backward).

THE PROBLEM-SOLVING PROCESS: - Computer as
a model of computation, Understanding the problem,
Formulating a model, Developing an algorithm, Writing
the program, Testing the program, and Evaluating the
solution.

ESSENTIALS OF PYTHON PROGRAMMING: -
Creating and using variables in Python, Numeric and
String data types in Python, Using the math module,
Using the Python Standard Library for handling basic I/O
- print, input, Python operators and their precedence.

ALGORITHM AND PSEUDOCODE
REPRESENTATION:- Meaning and Definition of
Pseudocode, Reasons for using pseudocode, The main
constructs of pseudocode - Sequencing, selection (if-else
structure, case structure) and repetition (for, while,
repeat-until loops), Sample problems*

FLOWCHARTS** :- Symbols used in creating a
Flowchart - start and end, arithmetic calculations,
input/output operation, decision (selection), module
name (call), for loop (Hexagon), flow-lines, on-page
connector, off-page connector.




* - Evaluate an expression, d=a+b*c, find simple interest,
determine the larger of two numbers, determine the
smallest of three numbers, determine the grade earned by
a student based on KTU grade scale (using if-else and
case structures), print the numbers from 1 to 50 in
descending order, find the sum of n numbers input by the
user (using all the three loop variants), factorial of a
number, largest of n numbers (Not to be limited to these
exercises. More can be worked out if time permits).

** Only for visualizing the control flow of Algorithms.
The use of tools like RAPTOR
(https://raptor.martincarlisle.com/)  is  suggested.
Flowcharts for the sample problems listed earlier may
be discussed

SELECTION AND ITERATION USING PYTHON:- if-
else, elif, for loop, range, while loop. Sequence data types
in Python - list, tuple, set, strings, dictionary, Creating
and using Arrays in Python (using Numpy library).

DECOMPOSITION AND MODULARISATION* :-
Problem decomposition as a strategy for solving complex
problems, Modularisation, Motivation for
modularisation, Defining and using functions in Python,
Functions with multiple return values

RECURSION:- Recursion Defined, Reasons for using
Recursion, The Call Stack, Recursion and the Stack,
Avoiding Circularity in Recursion, Sample problems -
Finding the nth Fibonacci number, greatest common
divisor of two positive integers, the factorial of a positive
integer, adding two positive integers, the sum of digits of
a positive number **,
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* The idea should be introduced and demonstrated using
Merge sort, the problem of returning the top three
integers from a list of n>=3 integers as examples. (Not
to be limited to these two exercises. More can be worked
out if time permits).

** Not to be limited to these exercises. More can be
worked out if time permits.

COMPUTATIONAL APPROACHES TO PROBLEM-
SOLVING (Introductory  diagrammatic/algorithmic
explanations only. Analysis not required):-
Brute-force Approach —

Example: Padlock, Password guessing

Divide-and-conquer Approach —
Example: The Merge Sort Algorithm
Advantages of Divide and Conquer Approach
- Disadvantages of the Divide and Conquer
Approach
Dynamic Programming Approach
Example: Fibonacci series
- Recursion vs Dynamic Programming

Greedy Algorithm Approach

- Example: Given an array of positive integers each
indicating the completion time for a task, find the
maximum number of tasks that can be completed in the
limited amount of time that you have.

- Motivations for the Greedy Approach

- Characteristics of the Greedy Algorithm

- Greedy Algorithms vs Dynamic Programming

Randomized Approach
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- Example 1: A company selling jeans gives a
coupon for each pair  of jeans. There are n different
coupons. Collecting n different coupons would give you
free jeans. How many jeans do you expect to buy before
getting a free one?

- Example 2: n people go to a party and drop off their
hats to a hat check person. When the party is over, a
different hat-check person is on duty and returns the n
hats randomly back to each person. What is the expected
number of people who get back their hats?

- Motivations for the Randomized Approach
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